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Abstract. The present note deals with Munk’s ocean model and proposes an alternative approach to find
its solution, with special regard to the western boundary layer. We introduce a suitable “distance” between
the related Sverdrup streamfunction and all the admissible streamfunctions which are valid in the western
boundary layer. We prove that such distance has a minimum that singles out a unique solution. Unlike the
traditional method, this procedure works without assuming a priori any dynamic boundary condition.

PACS. 92.10.Fj Dynamics of the upper ocean

1 Introduction

The wind-driven ocean circulation theory is, since the be-
ginning of last century, one of the keystones of Physical
Oceanography. In the course of its evolution, it has been
able to give more and more detailed answers to general
and fundamental problems, such as the propagation of
the large scale fluid motion into the depths of the oceans,
the formation of westward intensified currents in all the
major oceans of the Earth, the dynamics of the equato-
rial countercurrents, the structure of the planetary ther-
mocline and many others. The core of the theory is the
Sverdrup balance that shows how the oceanic transport re-
acts to the vorticity put in by the wind but it does not give
any information on the vorticity erosion that takes place
in the body of the water. In problems dealing with oceanic
basins as a whole or their western regions, another ingre-
dient is therefore necessary to complete the dynamical pic-
ture of the system, the vorticity dissipation. In the quasi-
geostrophic framework, which is widely used in a large
class of wind-driven ocean circulation models, the dissipa-
tion is mostly realized through a sink of relative vortic-
ity (bottom friction) or the lateral diffusion of the same
quantity. The lateral diffusion of relative vorticity poses
a special problem. In fact, because of its analytical form,
the diffusion term raises the order of the vorticity differ-
ential equation and thus the specification of additive, so
called dynamic, boundary conditions (dbcs) is demanded
to single out a unique solution from the model. Actually,
several dbcs are mathematically admissible but the ex-
istence and the uniqueness of the “true” one (if any) is
an open question. This conceptual difficulty is well known
since Munk [1] and it is quoted also recently (for instance
Kamenkovich et al. [2], Pedlosky [3] and McWilliams [4]).
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In the literature, the indeterminateness of these dbcs is
systematically circumvented by imposing arbitrarily cho-
sen conditions, for instance no-slip, free-slip, partial-slip,
super slip, which, however, are not explained in a deduc-
tive way.

In the present note we take into account, for simplicity,
Munk’s ocean model and propose an alternative approach
to finding its solution under the assumption that it admits
a western boundary layer. The starting point relies on the
fact that the Sverdrup solution ψI , because of its typical
length scale which is comparable with that of the basin
itself, tends to fill the whole fluid domain thus squeezing
the western boundary layer towards the westernmost part
of the basin. In spite of this, it is well known that the
western boundary layer solution ψW is “far” from that of
Sverdrup so one can evaluate a “distance” between ψW
and ψI in a suitable function space. Keeping fixed ψI ,
we prove that for varying ψW characterized by an arbi-
trary function C(y), this distance depends on C(y). The
minimum of the distance determinates a unique dbc and
eliminates the indeterminateness due to C(y). Conversely,
one can use this same dbc to find ψW through C(y).

2 Review of Munk’s model

The framework of our investigation is Munk’s model of
the basin-scale ocean circulation for a homogeneous ocean,
governed by the nondimensional vorticity equation in
the form

∂ψ

∂x
= T (x, y) + (δM/L)3 ∇4ψ, (1)

where T (x, y) ≡ k̂ ·
⇀

∇ × ⇀
τ is the wind forcing and

δM/L is the nondimensional boundary layer thickness.
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Equation (1) is referred to the fluid domain

D = [−π/2 ≤ x ≤ π/2]× [−π/2 ≤ y ≤ π/2] (2)

of the beta plane and the no mass flux across the boundary
of D, i.e.

ψ(x,±π/2) = 0 ∀x ∈ [−π/2, π/2],
ψ(±π/2, y) = 0 ∀y ∈ [−π/2, π/2], (3)

is prescribed for the flow. The latitudes y = ±π/2 select

two consecutive circles where the forcing k̂·
⇀

∇×⇀
τ vanishes,

i.e.

T (x,±π/2) = 0 (4)

so its form should be chosen to be consistent with this
condition. The related Sverdrup streamfunction ψI is the
solution of problem


∂ψI
∂x

= T (x, y)

ψI(π/2, y) = 0
, (5)

that is

ψI(x, y) = −
∫ π/2

x

T (λ, y) dλ. (6)

It is well known that streamfunction (6) is a local so-
lution of problem (1), (3) if O(δM/L) � 1. Because
of (4) and (6), the Sverdrup streamfunction satisfies con-
ditions (3) along the zonal and eastern walls of D and
it represents, aside from the western boundary layer, the
solution of the circulation problem provided that we as-
sume also free-slip dbcs along these walls. This is a direct
consequence of the identity

∇2ψI = −ψI
that easily comes from (6).

Hereafter we understand free-slip dbcs along the zonal
and the eastern boundaries and focus our attention only to
the western region (−π/2 ≤ x < δM/L) where we attach
the stretched coordinate ξ defined by the equation

δMξ = L(x+ π/2) (7)

and express the local solution ψW as

ψW = ψI(x, y) + φ(ξ, y). (8)

In (8) φ(ξ, y) is the well known matching term of the
form [3]

φ(ξ, y) ≡ exp(−ξ/2)
[
C(y) sin

(√
3ξ/2

)
+I(y) cos

(√
3ξ/2

)]
. (9)

In (9),

I(y) =
∫ π/2

−π/2
T (λ, y) dλ, (10)

while, usually, the function C(y) is singled out once the
dbc is specified in ξ = 0 (i.e. in x = −π/2, see (7)). In
particular, from (8) and (9) we evaluate[

∂ψW
∂x

]
x=−π/2
ξ=0

= T (−π/2, y)− L

2δM

[
I(y) −

√
3C(y)

]
(11)

and[
∂2ψW
∂x2

]
x=−π/2
ξ=0

=
∂T (−π/2, y)

∂x
− 1

2

(
L

δM

)2

×
[
I(y) +

√
3C(y)

]
. (12)

As O(L/δM ) � 1 while T and ∂T
∂x are O(1), from (11) we

infer that at x = −π/2,

∂ψW
∂x

= 0 ⇔ C(y) =
1√
3
I(y) (13)

while, from (12),

∂2ψW
∂x2

= 0 ⇔ C(y) = − 1√
3
I(y) · (14)

In other words, both no-slip and free-slip dbcs imply a def-
inite proportionality between the functions C(y) and I(y)
according to (13) and (14) respectively. Perhaps the no-
slip dbc is more usual than that of free-slip; in any case, a
detailed description of this last solution can be found, for
instance, in [3], Section 2.7.

In view of the following, we recall also the partial-slip
dbc which, along the western boundary, takes the general
form ∂2ψW

∂x2 −α∂ψW

∂x = 0, α being a constant to be defined.
Assume now the generic relationship

C(y) = σ I(y) where σ ∈ 
, σ �= ±1/
√

3. (15)

If (15) holds, then equations (11) and (12) give respec-
tively, at x = −π/2,

∂ψW
∂x

= − L

2δM

(
1 − σ

√
3
)
I(y), (16)

∂2ψW
∂x2

= −1
2

(
L

δM

)2 (
1 + σ

√
3
)
I(y). (17)

From (16) and (17) the partial-slip dbc in the form

∂2ψW
∂x2

=
L

δM

1 + σ
√

3
1 − σ

√
3
∂ψW
∂x

, σ �= ±1/
√

3 (18)

follows. No-slip and free-slip dbcs imply the uniqueness of
the solution of Munk’s model. The same is true also for the
partial-slip dbc (18) provided that −1/

√
3 < σ < 1/

√
3.

To explain this point, we start from two hypothetical
solutions, say ψ1 and ψ2 of problem (1), (3), and con-
sider the equation satisfied by their difference h(x, y) ≡
ψ1(x, y) − ψ2(x, y), that is, recalling (1),

∂h

∂x
= (δM/L)3 ∇4h. (19)
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Multiplication of (19) by h and the subsequent integration
on D with the aid of (3) yields∮

∂D

∇2h
⇀

∇ h · n̂ ds =
∫
D

(∇2h
)2

dxdy. (20)

As the considered dbcs are linear and homogeneous, if ψ1

and ψ2 satisfy one of them, also h verifies the same
condition. Therefore no-slip and free-slip dbcs imply the
vanishing of the line integral at the l.h.s. of (20) so∫
D(∇2h)2dxdy = 0 and thus h = 0. Thus uniqueness im-

mediately follows.
Partial-slip dbc along the western side and free-slip

elsewhere imply∮
western

wall

∇2h
⇀

∇h · n̂ ds =
∫
D

(∇2h
)2

ds (21)

but, along the western wall, n̂ · î = −1 so ∇2h
⇀

∇h · n̂ds =
−∂2h
∂x2

∂h
∂x . Because of (18), ∂2h

∂x2 = L
δM

1+σ
√

3
1−σ√3

∂h
∂x and hence

− ∫
western

wall

∂2h
∂x2

∂h
∂xds = − L

δM

1+σ
√

3
1−σ√3

∫
western

wall

(
∂h
∂x

)2
ds. Thus

we have from (21)

− L

δM

1 + σ
√

3
1 − σ

√
3

∫
western

wall

(
∂h

∂x

)2

ds =
∫
D

(∇2h
)2

ds.

We conclude that a sufficient condition in order that h be
identically vanishing is 1+σ

√
3

1−σ√3
> 0 whence the uniqueness

of the solution holds if −1/
√

3 < σ < 1/
√

3.

3 A “distance” between the western
and the interior solutions and the related
dynamic boundary condition

Since, once the forcing is fixed, the difference ψW − ψI
given by (9) depends only on C(y) through φ, it
makes sense to explore how a suitable “distance” of
ψW from ψI , say d(ψW , ψI) is minimized by ||C|| ≡{∫ π/2

−π/2 C
2(y)dy

}1/2

and how ||C|| is possibly related to a
definite dbc.

To establish d(ψW , ψI), we consider first the norm

||ψW − ψI ||1 ≡
{∫ π/2

−π/2
dy

∫ +∞

0

dξ(ψW − ψI)2
}1/2

(22)

which quantifies in a quite obvious way the departure of
the local solution (8) from that of the interior (6). With
the aid of the further definitions

〈C(y)I(y)〉 =
∫ π/2

−π/2
dy C(y)I(y),

||I|| ≡
{∫ π/2

−π/2
I2(y)dy

}1/2

(23)

the substitution of (9) into (22) yields

||ψW − ψI ||21 =
3
8
||C||2 +

√
3

4
〈CI〉 +

5
8
||I||2. (24)

Second, we consider the norm

||ψW − ψI ||2 ≡
{∫ π/2

−π/2
dy

∫ +∞

0

dξ
[
∂

∂ξ
(ψW − ψI)

]2
}1/2

(25)

which quantifies the departure of the meridional veloc-
ity of the western boundary layer from that given by the
Sverdrup balance which has the opposite sign. The explicit
evaluation of (25) gives, using again (23),

||ψW − ψI ||22 =
3
8
||C||2 −

√
3

4
〈CI〉 +

5
8
||I||2. (26)

Starting from (24) and (26) we define

d(ψW , ψI) =
{
||ψW − ψI ||2I + ||ψW − ψI ||22

}1/2

, (27)

that is to say

d(ψW , ψI) =
{

3
4
||C||2 +

5
4
||I||2

}1/2

· (28)

Obviously, a large freedom exists as a defining the distance
d(ψW , ψI), however, for our purposes it is mathematically
convenient that d(ψW , ψI), while depending on ||C||, does
not depend on other functionals of C(y), like 〈CI〉. Phys-
ically, we see from (8, 22, 25) and (27) that d =

√
2E

where E is the sum of the (nondimensional) potential and
kinetic energy of the flow in the western boundary layer

E =
1
2

∫ π/2

−π/2
dy

∫ +∞

0

dξ

[
φ2 +

(
∂φ

∂ξ

)2
]
·

This, under the approximation that, in the considered re-
gion, the kinetic energy of the zonal flow can be neglected
with respect to that meridional.

By using (27), one can check that d(ψW , ψI) actually
satisfies all the defining axioms of a distance (see the Ap-
pendix, concerning with the triangular inequality), i.e.:

• d(ψW , ψI) ≥ 0, d(ψW , ψI) = 0 ⇔ ψW = ψI ,

• d(ψW , ψI) = d(ψI , ψW ),
• d(ψW , ψI) ≤ d(ψW , ϕ) + d(ϕ, ψI), ∀ϕ.

From (28) we evaluate the minimum of d(ψW , ψI) in func-
tion of ||C|| which takes place in

||C|| = 0 (29)

and is given by

dmin(ψW , ψI) =
√

5
2

||I||. (30)
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From (10, 23) and (30) the minimum energy Em
in the western boundary layer turns out to be, in
function of the wind forcing, Em = 5

8 ||I||2 =
5
8

∫ π/2
−π/2 dy[

∫ π/2
−π/2 dλT (λ, y)]2. In accordance with this re-

sult, using (13) and (14) into (28) we verify that both the
no-slip and free-slip conditions imply E = 3

4 ||I||2 > Em.
More remarkably, equation (29) implies C(y) ≡ 0 and

therefore (15) holds for σ = 0. In this way we select
from (18) the partial-slip condition

∂2ψW
∂x2

− L

δM

∂ψW
∂x

= 0 at x = −π/2. (31)

From Section 2 we know that boundary condition (31)
leads of necessity to a unique solution in which C(y) ≡ 0.
This fact can be easily verified solving explicitly the prob-
lem by resorting to standard boundary layer techniques.

By using (31), we can check that partial-slip dbc along
the western side and free-slip elsewhere imply

∮
∂D

∇2ψ
⇀

∇ψ · n̂ ds = − L

δM

∫
western

wall

(
∂ψW
∂x

)2

ds < 0

and therefore these boundary conditions do not add en-
ergy to the system [3], Section 2.10.

To explain the structure of the meridional velocity v =
∂ψ
∂x , for different dbcs at the western boundary, we consider
the western region (−π/2 ≤ x ≤ 0) of the fluid domain (2)
and take the standard forcing T (y) = − cos(y). Then, if
we solve problem (1, 3) and evaluate v at the middle-basin
latitude y = 0, we find

v(x) = −1 + r exp[−r(x+ π/2)]
{(√

3π − C
)

× sin
⌊√

3r(x + π/2)
⌋

+
(√

3C + π
)

cos
⌊√

3r(x + π/2)
⌋}

(32)

where r = L
2δM

. Figure 1 shows the plots of v(x) for

1) C = −π/√3 + 1/
(
r
√

3
)

(= O(π/
√

3)), i.e. in the no-
slip case;

2) C = 0, i.e. in the partial-slip case given by (31);
3) C = π/

√
3, i.e. in the free-slip case.

Note that, in order to make the comparison meaningful,
we have fixed a unique value of the parameter r(= 4).
While this yields a physically acceptable profile of v(x)
for free-slip dbc, for this same value of r, the boundary
layer width in (1) and (2) turns out to be rather large. In
any case, nothing prevents to take smaller values of r in
these last configurations.

Moreover, we observe in the same figure a sequence
of nodes for given values xn of longitude, which come
from the condition ∂v

∂C applied to (32), that is to say
tg�√3r(xn + π/2)� =

√
3.

Fig. 1. Profiles of the nondimensional meridional velocity
given by (32) for 1) no-slip, 2) partial-slip, 3) free-slip dy-
namical boundary conditions. The nondimensional longitude
is restricted to the half interval −π/2 ≤ x ≤ 0. The meridional
velocity is referred to the middle-basin latitude.

4 Conclusion

Previous considerations point out the possibility to re-
state Munk’s model by substituting any a priori dbc
with the request of minimizing the distance (27, 28). The
procedure singles out the identically vanishing function
C(y) ≡ 0 which is equivalent to the use of condition (31)
in the standard method. When nonlinear effects are in-
cluded, another nondimensional parameter, usually de-
noted by δI/L, must be taken into consideration, as well
as the ratio δI/δM . We wish to emphasize the difficulty
in generalizing the method outlined in Section 3 in the
presence of nonlinearity, although the analytical approach
seems to be feasible in the range 0 < δI/δM � 1.

The authors thank the referees for helpful comments.

Appendix

Here we verify the triangular inequality, appearing in
the list of the defining axioms of a distance, for d given
in (27). We set preliminarily ai = ||ψW − ϕ||i and bi =
||ϕ − ψI ||i. Hence we can write d(ψW , ϕ) =

(
a2
1 + a2

2

)1/2

and d(ϕ, ψI)(
(
b21 + b22

)1/2. We know (see for instance
Kolmogorov and Fomin [5]) that

||ψW − ψI ||i ≤ ai + bi. (A.1)

To prove that

d(ψW , ψI) ≤ d(ψW , ϕ) + d(ϕ, ψI),
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that is to say

(||ψW − ψI ||2I + ||ψW − ψI ||22
)2 ≤(

a2
2 + a2

2

)1/2
+

(
b21 + b22

)1/2
, (A.2)

we bound from above the l.h.s. of (A.2), starting
from (A.1), as follows.

(||ψW − ψI ||21 + ||ψW − ψI ||22
)1/2

≤
[
(a1 + b1)

2 + (a2 + b2)
2
]1/2

=
[
a2
1 + a2

2 + b21 + b22 + 2 (a1b1 + a2b2)
]1/2

≤
⌊
a2
1 + a2

2 + b21 + b22 + 2
(
a2
1 + a2

2

)1/2 (
b21 + b22

)1/2
⌋

=
((
a2
1 + a2

2

)1/2
+

(
b21 + b22

))1/2

. (A.3)

Last term of (A.3) coincides with the r.h.s. of (A.2),
so inequality (A.2) is proved.
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